Free Algebra
Tutorials!
Home
Miscellaneous Equations
Operations with Fractions
Undefined Rational Expressions
Inequalities
Writing Equations for Lines Using Sequences
Intersections of Lines and Conics
Graphing Linear Equations
Solving Equations with Log Terms and Other Terms
Quadratic Expresions - Complete Squares
Adding and Subtracting Fractions with Like Denominators
Multiplying a Fraction by a Whole Number
Solving Equations with Log Terms and Other Terms
Solving Quadratic Equations by Factoring
Locating the Solutions of the Quadratic Equation
Properties of Exponents
Solving Equations with Log Terms on Each Side
http:
Graphs of Trigonometric Functions
Estimating Products and Quotients of Mixed Numbers
Inequalities
The circle
Adding Polynomials
Adding Fractions with Unlike Denominators
Factoring Polynomials
Linear Equations
Powers of Ten
Straight Lines
Dividing With Fractions
Multiplication Property of Equality
Rationalizing Denominators
Multiplying And Dividing Fractions
Distance Between Points on a Number Line
Solving Proportions Using Cross Multiplication
Using the Quadratic Formula
Scientific Notation
Imaginary Numbers
Values of Symbols for Which Fractions are Undefined
Graphing Equations in Three Variables
Writing Fractions as Decimals
Solving an Equation with Two Radical Terms
Solving Linear Systems of Equations by Elimination
Factoring Trinomials
Positive Rational Exponents
Adding and Subtracting Fractions
Negative Integer Exponents
Rise and Run
Brackets
Multiplying Square Roots
Multiplying Polynomials
Solving Systems of Linear Inequalities
Multiplication Property of Radicals
A Quadratic within a Quadratic
Graphing a Linear Equation
Calculations with Hundreds and Thousands
Multiplication Property of Square and Cube  Roots
Solving Equations with One Log Term
The Cartesian Coordinate Plane
Equivalent Fractions
Adding and Subtracting Square Roots
Solving Systems of Equations
Exponent Laws
Solving Quadratic Equations
Factoring Trinomials
Solving a System of Three Linear Equations by Elimination
Factoring Expressions
Adding and Subtracting Fractions
The parabola
Computations with Scientific Notation
Quadratic Equations
Finding the Greatest Common Factor
Introduction to Fractions
Simplifying Radical Expressions Containing One Term
Polynomial Equations
Graphing and Intercepts
The Number Line
Adding and Subtracting Rational Expressions with Different Denominators
Scientific Notation vs Standard Notation
Powers
Factoring by Grouping
Extraneous Roots
Variables and Expressions
Linera Equations
Integers and Substitutions
Squares and Square Roots
Adding and Subtracting Rational Expressions with Different Denominators
Solving Linear Inequalities
Expansion of a Product of Binomials
Powers and Exponents
Finding The Greatest Common Factor
Quadratic Functions
The Intercepts of a Parabola
Solving Equations Containing Rational Expressions
http:
Subtracting Polynomials
Solving Equations
Adding Fractions with Unlike Denominators
Solving Systems of Equations by Substitution
Solving Equations
Product and Quotient of Functions
Try the Free Math Solver or Scroll down to Tutorials!

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Graphing Equations in Three Variables

The graph of any equation in three variables can be drawn on a three-dimensional coordinate system. The graph of a linear equation in three variables is a plane. To solve a system of three linear equations in three variables by graphing, we would have to draw the three planes and then identify the points that lie on all three of them. This method would be difficult even when the points have simple coordinates. So we will not attempt to solve these systems by graphing.

By considering how three planes might intersect, we can better understand the different types of solutions to a system of three equations in three variables. The large figure below shows some of the possibilities for the positioning of three planes in three-dimensional space. In most of the problems that we will solve the planes intersect at a single point as in figure (a). The solution set consists of one ordered triple. However, the system may include two equations corresponding to parallel planes that have no intersection. In this case the equations are said to be inconsistent. If the system has at least two inconsistent equations, then the solution set is the empty set [see figures (b) and (c)].

There are two ways in which the intersection of three planes can consist of infi- nitely many points. The intersection could be a line or a plane. To get a line, we can have either three different planes intersecting along a line, as in figure (d) or two equations for the same plane, with the third plane intersecting that plane. If all three equations are equations of the same plane, we get that plane for the intersection. We will not solve systems corresponding to all of the possible configurations described. The following examples illustrate two of these cases.

All Right Reserved. Copyright 2005-2024